Pairwise Constraint Propagation on Multi-View Data

نویسندگان

  • Zhiwu Lu
  • Liwei Wang
چکیده

This paper presents a graph-based learning approach to pairwise constraint propagation on multi-view data. Although pairwise constraint propagation has been studied extensively, pairwise constraints are usually defined over pairs of data points from a single view, i.e., only intra-view constraint propagation is considered for multi-view tasks. In fact, very little attention has been paid to inter-view constraint propagation, which is more challenging since pairwise constraints are now defined over pairs of data points from different views. In this paper, we propose to decompose the challenging inter-view constraint propagation problem into semi-supervised learning subproblems so that they can be efficiently solved based on graph-based label propagation. To the best of our knowledge, this is the first attempt to give an efficient solution to inter-view constraint propagation from a semi-supervised learning viewpoint. Moreover, since graph-based label propagation has been adopted for basic optimization, we develop two constrained graph construction methods for interview constraint propagation, which only differ in how the intraview pairwise constraints are exploited. The experimental results in cross-view retrieval have shown the promising performance of our inter-view constraint propagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified Constraint Propagation on Multi-View Data

This paper presents a unified framework for intra-view and inter-view constraint propagation on multi-view data. Pairwise constraint propagation has been studied extensively, where each pairwise constraint is defined over a pair of data points from a single view. In contrast, very little attention has been paid to inter-view constraint propagation, which is more challenging since each pairwise ...

متن کامل

Multi-View Constraint Propagation with Consensus Prior Knowledge

In many applications, the pairwise constraint is a kind of weaker supervisory information which can be collected easily. The constraint propagation has been proved to be a success of exploiting such side-information. In recent years, some methods of multi-view constraint propagation have been proposed. However, the problem of reasonably fusing different views remains unaddressed. In this paper,...

متن کامل

Symmetric Graph Regularized Constraint Propagation

This paper presents a novel symmetric graph regularization framework for pairwise constraint propagation. We first decompose the challenging problem of pairwise constraint propagation into a series of two-class label propagation subproblems and then deal with these subproblems by quadratic optimization with symmetric graph regularization. More importantly, we clearly show that pairwise constrai...

متن کامل

Pairwise Constraint Propagation: A Survey

As one of the most important types of (weaker) supervised information in machine learning and pattern recognition, pairwise constraint, which specifies whether a pair of data points occur together, has recently received significant attention, especially the problem of pairwise constraint propagation. At least two reasons account for this trend: the first is that compared to the data label, pair...

متن کامل

Fast Constraint Propagation for Image Segmentation

This paper presents a novel selective constraint propagation method for constrained image segmentation. In the literature, many pairwise constraint propagation methods have been developed to exploit pairwise constraints for cluster analysis. However, since most of these methods have a polynomial time complexity, they are not much suitable for segmentation of images even with a moderate size, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.04284  شماره 

صفحات  -

تاریخ انتشار 2015